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Abstract. In this report, we give a summary of the paper A Primal-Dual Slack Approach
to Warmstarting Interior-Point Methods for Linear Programming. We start this report
with a short summary about Interior-Point Methods. We then introduce the concept of
warmstarting a Linear Program. We explain the two main problems when warmstarting
with an IPM. We then present the slack approach proposed by Engau et. al. to efficiently
warmstart with an IPM. The last part of this report treats the choice of slack variables for
the proposed method. We conclude with some ideas for future research.

1. Introduction

A linear program (LP) in standard primal form is

(1)
min c>x
s.t. Ax = b

x ≥ 0,

where x ∈ Rn is the decision variable, A ∈ Rm×n is the constraint matrix, b ∈ Rm is the
right-hand-side vector, and c ∈ Rn is the cost vector. We denote d = (A, b, c) as the problem
data for (1). The dual problem of (1) has the form

(2)
max b>y
s.t. A>y + s = c

s ≥ 0,

where y ∈ Rm is the dual variable, and s ∈ Rn is the slack variable.
In this report, we look at primal-dual path-following Interior-Point Methods (IPMs), as

explained in [2, 7], that are based on the logarithmic barrier function

(3) min c>x− µ
n∑
i=1

log(xi) s.t. Ax = b.

The first-order Karush-Kuhn-Tucker (KKT) optimality conditions for the barrier function
are

Ax = b(4a)
A>y + s = c(4b)
XSe = µe,(4c)

where e = (1, 1, . . . , 1)>. Here, and henceforth variables represented by capital letters will
represent the diagonal matrix generated by the corresponding lower-case variable, for ex-
ample X = diag(x), S = diag(s). Equation (4a) ensures the primal feasibility, (4b) ensures
the dual feasibility, and (4c) represents the complementary slackness. In [8] it is shown that
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for every µ > 0, there is a unique solution to (4). The so-called central path is the set of
x(µ), µ > 0 and converges to the optimal solution for (1) when µ approaches zero. Under
condition (4) we have that

nµ = x>s = x>(c− A>y) = x>c− x>A>y = c>x− b>y,

so it follows that nµ represents the duality gap between the primal and the dual solution for
the penalized problem.

In the primal-dual algorithm, to save computation, we solve the KKT conditions (4) only
approximately. We use Newton’s method to compute a step ∆z = (∆x,∆y,∆s). However,
for (4c), we approximate the non-linear equation

(xi + ∆xi)(si + ∆si) = si∆xi + xi∆si + ∆xi∆si + xisi = µ

by dropping the non-linear term with

si∆xi + xi∆si = µ− xisi.

We can therefore solve the following Newton system

(5)

A 0 0
0 A> I
S 0 X

∆x
∆y
∆s

 =

 rb
rc

µe−XSe


where rb = b − Ax and rc = c − A>y − s are the residuals. They are zero if the starting
point is feasible, non-zero if the starting point is infeasible. To solve this system we use the
equation in the second row to obtain ∆s = rc−A>∆y and substitute in the equation of the
last row to obtain

S∆x−XA>∆y = µe−XSe−Xrc.

Multiplying this equation by AS−1 and using A∆x = rb, we get

AS−1XA>∆y = rb − AS−1(µe−XSe−Xrc).

Let the diagonal matrix D = S−1/2X−1/2. Then the solution, the so-called normal equations,
becomes

(6)
∆y = (AD2A>)−1(rb − AS−1(µe−XSe−Xrc))
∆s = rc − A>∆y
∆x = S−1(µe−XSe)−D2∆s.

Commonly, algorithms either solve (6) by using a Cholesky factorization of AD2A>, or they
solve the symmetric indefinite system

(7)
[

0 A
A> −D−2

] [
∆y
∆x

]
=

[
rb

rc − µX−1e+ s

]
.

Since the solution to (5) is only an approximation to the KKT conditions, we perform a
line-search in the direction of the Newton step. The details for a line-search algorithm can
be found in [2]. Following is an outline of the primal-dual path-following algorithm.
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Algorithm 1: Primal-Dual Path-Following IPM
Input: d = (A, b, c), z0 = (x0, y0, s0), µ > 0, ρ < 1,εb > 0, εc > 0, εd > 0
Output: Optimal solution z∗
begin

k ← 0;
rkb = b− Axk;
rkc = c− A>yk − sk;
while max

{
‖rk

b ‖
εb
, ‖r

k
c ‖
εc
, (xk)>sk

εd

}
> 1 do

Solve the Newton system (5) for ∆z = (∆x,∆y,∆s);
Perform linesearch to compute step size αk;
zk+1 = (xk+1, yk+1, sk+1)← (xk, yk, sk) + αk(∆x,∆y,∆s);
k ← k + 1;
Update rkb , rkc ;
µk ← ρµk−1

end
z∗ ← zk;

end

At each iteration in algorithm 1, we compute a step length α for the Newton step. Now
given that rkb = b− Axk, A∆xk = rkb , and xk+1 = xk + α∆xk, we have

rk+1
b = b− Axk+1

= b− A(xk + α∆xk)
= b− Axk − αA∆xk
= b− Axk − αrkb
= rkb − αrkb
= (1− α)rkb .

We therefore have

(8) rk+1 = (1− αk)rk =
k∏
j=0

(1− αj)r0.

Hence a feasible IPM will always maintain feasibility of its starting points, and an infeasible
IPM (IIPM) can only establish feasibility by taking a full Newton step with αk = 1.

2. Warmstarting Interior-Point Algorithms

In many real-life applications where an instance of problem (1) needs to be solved, it often
occurs that we already have an estimate or an approximation for the solution that we would
like to exploit in order to accelerate the solving time. A classic example is portfolio optimiza-
tion where one optimizes the statistical expectation of a portfolio, subject to constraints that
involve the covariance of the portfolio data [5]. The portfolio data consists usually of daily
stock market information about the individual stocks over a period of time. Depending on
the size of the portfolio, solving (1) can take a long time. At the end of a day, the investor
would like to incorporate the new market information of the current day into the model, in
order to solve for a new optimal investment for the next day. If the historical data in the
model is large, such changes result in small perturbations of the original problem.
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Let us consider an initial LP with data d◦ = (A◦, b◦, c◦) with a known optimal solution
z◦ = (x◦, y◦, z◦). Let ∆d = (∆A,∆b,∆c) be the perturbation of the original problem d◦.
Our new problem is therefore d = (A, b, c) = (A◦ + ∆A, b◦ + ∆b, c◦ + ∆c). Warmstarting
means to use the solution z◦ as a starting point for a new problem with data set d. There
are two main issues when warmstarting an IPM for an LP.
(a) Since z◦ is optimal for d◦, it satisfies the KKT conditions and it follows that rb = rc = 0,

and therefore

rb = b− Ax◦ = (b◦ + ∆b)− (A◦ + ∆A)x◦ = ∆b−∆Ax◦

and

rc = c− A>y◦ − s = (c◦ + ∆c)− (A◦ + ∆A)>y◦ − s◦ = ∆c−∆A>y◦

where rb and rc are now potentially nonzero. Hence our starting point z◦ = (x◦, y◦, s◦)
may not satisfy (4a) and (4b).

(b) Since z◦ is an optimal point, we have x◦s◦ ≈ 0. Hence if µ0 > 0 then X0S0e < µ0e
and the point z◦ violates the interiority condition (x0, s0) > 0. The strict feasibility
(x0, s0) > 0 is required to apply IPMs (hence the name Interior Point Methods).

One way to address (a) is to project onto the feasible set. This was proposed in [6] by solving
the weighted least-squares adjustments (LSA)

min
∆x
‖Σ∆x‖

s.t.A(x◦ + ∆x) = b(9)
x◦ + ∆x ≥ 0

and

min
∆y,∆s

‖Λ∆s‖

s.t.A>(y◦ + ∆y) + (s◦ + ∆s) = c(10)
s◦ + ∆s ≥ 0,

where Σ and Λ are chosen according to one of the following methods.
• Plain LSA (PLSA): Σ and Λ are identity matrices.
• Weighted LSA (WLSA): Σ = X−1 and Λ = S−1.
• Jointly WLSA (JWLSA): Σ = X−1S and Λ = S−1X.

The new point (x, y, s) = (x◦ + ∆x, y◦ + ∆y, s◦ + ∆s) obtained by the projection will be
feasible. However, the point will not be in the interior, in general and the method does
therefore not solve (b). Nevertheless, the method works well for problem instances, where
the projected point might be close enough to the optimal solution and there is no need to
use an IPM to converge.

A second way to address (a) is to solve directly the Newton system

A∆x = rb

A>∆y + ∆s = rc

X◦∆s+ S◦∆x = 0.

To solve this system, it needs to be reduced to the equivalent normal equations. It can then
be solved with the Cholesky factorization of AD2A>. Similar to the projection method, this
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approach will result in a feasible point, but it will not result in a sufficiently interior point
to apply an IPM.

An approach to correct (a) and (b) simultaneously was proposed in [1]. Auxiliary variables
ξ and ψ are introduced to relax the non-negativity constraint on x and s. Additional penalty
parameters t and u penalize the auxiliary variables in the objective function. The original
problem becomes

min c>x+ t>ξ max b>y − u>ψ
s.t. Ax = b s.t. A>y + s = c

0 ≤ x+ ξ ≤ u −ψ ≤ s ≤ t
ξ ≥ 0 ψ ≥ 0.

If the penalty parameter t and u are chosen sufficiently large, then the IPM will eventually
reduce the auxiliary variables to zero. However, the correct choice of the penalty parameters
is the drawback of this method. Too high values for t and u result in numerical instability.
Too low values might leave the auxiliary variables non-zero and the solution is not optimal.

3. Warmstart Approach by Engau et. al.

In [4], Engau, Anjos, and Vannelli introduce a new set of slack variables ξ and ψ. The
resulting warmstarting scheme becomes

(11)

min c>x max b>y
s.t. Ax = b s.t. A>y + s = c
x− ξ = 0 s− ψ = 0
ξ ≥ 0 ψ ≥ 0.

The advantage of this formulation is that there are no penalty parameters needed. Note also
that x and s are unrestricted and X◦S◦ ≈ 0 does not affect the interiority anymore. Hence
we can set z0 = z◦ as long as we choose ξ0 and ψ0 in a way that they are sufficiently interior.
The new KKT conditions for (11) are therefore

Ax = b(12a)
A>y + s = c(12b)
x− ξ = 0(12c)
s− ψ = 0(12d)
ΞΨe = µe,(12e)

where ΞΨe = µe now measures our duality gap. Conditions (12c) and (12d) ensure that our
final feasible solution, when µ = 0, will be the same as the solution to (4). In fact, solving
for the Newton step in our first iteration, should already reduce the residuals rx = ξ−x and
rs = ψ − s close to zero so that x1 ≈ ξ1 and s1 ≈ ψ1. Using again the same residuals rb and
rc as in (5), we can rewrite our Newton system as

(13)


A 0 0 0 0
0 A> I 0 0
I 0 0 −I 0
0 0 I 0 −I
0 0 0 Ψ Ξ




∆x
∆y
∆s
∆ξ
∆ψ

 =


rb
rc
rx
rs

µe− ΞΨe

 .
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If we let ∆ξ = ∆x − rx,∆ψ = ∆s − rs, and Rx = diag(rx), Rs = diag(rs), we can reduce
(13) to

(14)

A 0 0
0 A> I
Ψ 0 Ξ

∆x
∆y
∆s

 =

 rb
rc

µe− ΞΨe+ ΞRse+ ΨRxe


which has the same structure as (5). If, this time, we let D = Ξ1/2Ψ−1/2, we can further
reduce the system to the normal equations

(15)

∆x = A−1rb
∆y = (A−1)>(rc + µΞ−1e−Ψ + rs + Ξ−1Ψrx) + (A−1)>D−2∆x
∆s = rc − A>∆y
∆ξ = ∆x− rx
∆ψ = ∆s− rs.

The computation for the first three equations is about the same as for (6) in the original
problem. The additional computation of ∆ξ and ∆ψ is negligible. Hence, the new system
will not increase the computation time for further iterates, once the points are well centered
again.

In their paper, Engau et. al. show that for solving (1), the overall complexity of an IPM
is maintained or even improved [4]. They also show that the warmstart residuals ‖r0

b‖ and
‖r0

c‖ are smaller than for a cold start and that the algorithm needs therefore fewer iterations
to converge than a cold start, if the perturbations are not to big.

4. Initializing the Slack Variables

In the complexity analysis in [4], it is assumed that (ξ0, ψ0) = (ζe, ζe), where ζ ≥
‖(ξ∗, ψ∗)‖∞ = ‖(x∗, s∗)‖∞ and (x∗, s∗) is an optimal solution. It is clear that (x∗, s∗) is
not known in advance, and hence, the initial point for (ξ0, ψ0) must be chosen differently.
There are two main factors in chosing the initial point.

• Since X◦S◦ ≈ 0, we do not want to carry the numerical difficulties of very small
entries in either x◦ or s◦. We therefore require

(ξ0, ψ0) ≥ (x◦, s◦).

• From (8) we know that rk+1 = (1−α)rk for all the residuals. It is therefore desirable
that the residuals r0

x = ξ0 − x◦ and r0
s = ψ0 − s◦ start at a similar size as r0

b and r0
c .

Engau et. al. therefore suggest

(16) r0
x = (X◦)1/2(S◦)−1/2‖(rb, rc, 1)‖∞e
r0
s = (X◦)−1/2(S◦)1/2‖(rb, rc, 1)‖∞e,

where ‖(rb, rc, 1)‖∞ measures the maximal residual.
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We can therefore intialize ξ0 and ψ0 with

Ξ0Ψ0e = (X◦ +R0
x)(S

◦ +R0
s)e

= X◦S◦ +R◦xS
◦ +X◦R◦s +R◦xR

◦
s

= µe+ 2(X◦)1/2(S◦)−1/2S◦‖(rb, rc, 1)‖∞e+ ‖(rb, rc, 1)‖2
∞e

= µe+ 2
√
µ‖(rb, rc, 1)‖∞e+ ‖(rb, rc, 1)‖2

∞e

= (
√
µ+ ‖(rb, rc, 1)‖∞)2e.

Note that this warmstart method could not be used from an exact optimal solution (x◦, s◦)
since zero components in x◦ or s◦ would render the inverses of X◦ and S◦ infeasible. Also,
an approximate optimal solution with a small centrality measure µ = x◦>s◦ & 0 will result
in a large starting point that slows down the convergence of the algorithm.

We can avoid such problems by not relaxing variables that do not need to be relaxed. In
an exact solution, we call the variables that are zero non-basic variables. Non-basic variables
need not to be relaxed. So if we could determine the variables that are non-basic, we could
directly warmstart from their previous solution. Among many different indicator functions
for basic variables that are found in the literature, Engau et. al. suggest the primal-dual
indicator defined by

x◦i
s◦i

< τ ⇒ x◦i → 0 and s◦i > 0(17)

s◦i
x◦i

< τ ⇒ s◦i → 0 and x◦i > 0(18)

where τ ∈ [0, 1] is a threshold. Note that if (x◦, s◦) is a perfectly-centered solution, hence
for all i, x◦i s◦i = µ, then we can use the variables directly as an indicator since

x◦i
s◦i

< τ ⇔ x◦i <
√
µτ <

√
µ/τ < s◦i

s◦i
x◦i

< τ ⇔ s◦i <
√
µτ <

√
µ/τ < x◦i .

This allows us to consider only variables for relaxation, which values exceed
√
µ/τ . Extend-

ing (16), we initialize the residuals with
(19)

(r0
xi, r

0
si) =


((2
√
µ‖(rb, rc, 1)‖∞ + ‖(rb, rc, 1)‖2

∞)/s◦i , 0) ifx◦i <
√
µτ <

√
µ/τ < s◦i

(0, (2
√
µ‖(rb, rc, 1)‖∞ + ‖(rb, rc, 1)‖2

∞)/x◦i ) ifs◦i <
√
µτ <

√
µ/τ < x◦i

(
√
x◦i /s

◦
i ‖(rb, rc, 1)‖∞,

√
s◦i /x

◦
i ‖(rb, rc, 1)‖∞) if

√
µτ ≤ (x◦i , s

◦
i ) ≤

√
µ/τ.

5. Computational Results

The above warmstarting scheme was tested by Engau et. al. on selected LP problems
from the Netlib test suite [4]. For each test case, they solved the initial problem with data d◦
for an optimal solution (x◦, y◦, s◦). The following perturbation is described here for ∆c and
applies similarly to ∆A and ∆b. The entries in ∆c are chosen such that at most 10% or 20
entries are changed. They then generate a uniformly distributed random number ε ∈ [−1, 1]
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Figure 1: WCR Performance Profile With Primal-Dual Indicator Threshold τ = 1.

and set

∆ci =

{
εδ if c◦i = 0

εδc◦i otherwise

where δ is the perturbation level (scale factor). The scale factor balances the perturbations
among problem sets that might be ill conditioned. The new perturbed problem is then solved
by a cold start and a warmstart. Engau et. al. then computed the Warm-to-Cold-start-
iteration-ratio (WCR). An example of the results is shown in Figure 5. From the results,
Engau et. al. conclude that the warmstart scheme reduces the overall iterations of a cold
start by over 50%.

6. Conclusion

In this report we summarized and covered parts of [4, Section 2], [4, Section 3], and [4,
Section 4]. We did not cover [4, Section 1], which is a historical introduction to LPs and
IPMs. We also omitted the part about shifted-barrier methods in [4, Section 2.2] as well as
the complexity analysis in [4, Section 3.1].

Contrary to the popular belief, the research presented in the paper shows that IPMs can
be warmstarted efficiently. This opens the door for a whole new area of research. In [3],
they extend their approach to combinatorial optimization, specifically for the use in Mixed
Integer Linear Programs (MILP).

It would be interesting to see how the approach of Engau et. al. compares to the approach
in [1] in numerical tests. A further direction of research would be the comparison of the
IPM warmstart approach with warmstarting the simplex method. There are many problem
instances where IPMs outperform the simplex method. However, since the simplex method
is very suitable for warmstarts, it would be interesting to see if and how long (how many
warmstarts) it takes for the simplex to outperform the IPM method. It should also be
compared to algorithms that cross-over from IPM to the simplex method in order to do the
warmstarts.
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